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Abstract—Simulation and Analytical models for the 

ultrasonic/sonic drill/corer (USDC) are described in this paper.  
The USDC was developed as a tool for in-situ rock sampling and 
analysis in support of the NASA planetary exploration program.  
The USDC uses a novel drive mechanism, which transfers 
ultrasonic vibrations of a piezoelectric actuator into larger 
oscillations of a free-flying mass (free-mass).  The free-mass impact 
on the drill bit creates a stress pulse at the drill tip/rock interface 
causing fracture in the rock.  The main parts of the device 
(transducer, free-mass, bit, and rock) and the interactions between 
them were analyzed and numerically modeled to explore the drive 
mechanism.  Each of these interactions is normally described by a 
time-dependent 2 or 3 dimensional model involving slowly 
converging solutions, which makes the conventional approach 
unsuitable for USDC optimization studies.  A simplified integrated 
model using tabulated data was developed to simulate the 
operation of the USDC on desktop PC and successfully predicted 
the characteristics of the device under a variety of conditions.  The 
simulated results of the model and the experimental data used to 
verify the model are presented.  
 

Index Terms- piezoelectric actuators, ultrasonic sonic drill 
simulation, free-mass resonance, impact modeling, rock coring.  
 

I. INTRODUCTION 
UTURE  NASA exploration missions to Mars, Europa, Titan, 
or possibly comets  or asteroids are seeking to perform 
sampling, in-situ analysis and perhaps the return of material 

to Earth for further tests.  Existing drilling techniques are 
limited by the need for large axial forces and holding torques, 
high power consumption and an inability to efficiently duty 
cycle. Lightweight robots and rovers have difficulties 
accommodating these requirements. To address these key 
challenges to the NASA objective of planetary in-situ rock 
sampling and analysis, an ultrasonic/sonic driller/corer (USDC) 
was developed [1], [2].  The actuator of the USDC is an 
ultrasonic horn transducer that is driven by a piezoelectric stack. 
Unlike the typical ultrasonic drill where the drill stem is 
acoustically coupled to the transducer, the horn transducer in 
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the USDC drives a free flying mass (free-mass), which 
bounces between the horn tip and a drill stem at sonic 
frequencies. The impacts of the free-mass create stress 
pulses that propagate to the interface of the stem tip and the 
rock.  The rock fractures when its ultimate strain is 
exceeded at the rock/bit interface. This novel drilling 
mechanism has been shown to be more efficient and 
versatile than conventional ultrasonic drills under a variety 
of conditions.  The low mass of a USDC device and the 
ability to operate with minimum axial load with near zero 
holding torque (see Fig. 1) offers an important tool for 
sample acquisition and in-situ analysis.  Another important 
characteristic of the USDC is the capability to operate in 
the challenging environment of space.  
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Fig. 1.  The USDC is shown coring with minimum axial 
force and holding torque (left), and a schematic diagram of 
the USDC device (right). 

 
The model developed for the USDC describes five 

elements involved in the drilling i.e. the electrical driver, 
ultrasonic transducer, free-mass, drill stem, and the rock. In 
the initial modeling the main elements and the interaction 
between them were analyzed and modeled separately. A 
one-dimensional model was then developed for each 
interaction and an integrated software program was 
developed to simulate the operation of all parts of the 
USDC.  The strain that is induced in the rock was 
calculated and the drilling rate was estimated based on the 
specific energy required to fracture the rock. This paper 
reports on the individual models and the algorithms of the 
integrated program.  The computed results and the 
comparison with the experimental tests are also presented. 

II. MODELING 
The USDC device consists of three main parts: an 

ultrasonic transducer (piezoelectric stack, a backing 
element, and a horn), free-mass and a drill stem.  The 
ultrasonic transducer vibrates at a frequency of about 
20kHz.  These vibrations of the horn tip excite the free-
mass, causing it to hop between the horn tip and the top of 
the drill stem with average frequencies in range of 100 to 
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1000 Hz.   The free-mass transfers energy from the ultrasonic 
transducer to the drill stem.  The shock waves caused by the 
impacts of the free-mass propagate to the bit/rock interface and 
wherever the rock is strained past its ultimate strain it fractures.  
In order to determine the critical issues related to the control 
and optimization of the drill models the interaction at the 
various interfaces of the drill were investigated.  The four 
interactions that were modeled include: 1) transducer with the 
driving circuit, 2) horn tip with the free-mass, 3)   free-mass 
with the drill stem and 4) base of the drill stem (bit) with the 
rock.  In order to integrate these models into a computer 
program to simulate the operation of the USDC, efforts were 
made to simplify the models and reduce the computing time. 

A. Ultrasonic horn transducer 
The horn transducer consists of a steel-backing block, a PZT-

8 stack, a steel horn and a pre-stress bolt as shown in Fig. 2.  
The overall dimensions of the elements of the transducer are 
shown in Table 1.   

 
Table 1.  The dimensions of the elements of the transducer 

Piezoelectric Stack 
OD.=0.025 m     ID. = 0.0125 m     L= 0.0212 m   n=4 

Stress Bolt 
Screw: D.=0.00952 m     L= 0.0339 m  

 Head: D.=0.011 m     L= 0.00902 m   
 

Backing  
D.=0.0268 m     L= 0.0127 m    

 
Horn 

Base: D.=0.0268/0.0366 m    Tip:  D=0.0089 m    
L= 0.0683 m    

 
The transducer is a composite longitudinal vibrator with 

varying cross sections and can be modeled by the Mason 
equivalent circuit as presented in a previous paper [3].  In order 
to include engineering details in the final transducer design the 
finite element approach was used to determine the full 
frequency response of this piezoelectric device.  An 
electromechanically coupled element [4] was applied to model 
the piezoelectric material, which is available in commercial 
software ANSYS [5].  

In this high power ultrasonic application, the transducer is 
designed and fabricated to have high mechanical Q, and is 
operated at or near its first longitudinal resonance frequency. 
Using modal analysis allowed us to isolate and concentrate on 
this resonance mode and it simplifies the model and reduces the 
computing time. Solving the generalized eigenvalue problem of 
finite element equations, the resonance frequencies and 
corresponding mode shapes can be found. We obtained a set of 
resonance frequencies, nωωω ,,, 21 K  and normalized mode 
shapes (eigenvectors)  
{ } { } { }nξξξ ,...,, 21  (1) 

 

 
Fig. 2. The calculated modal shape of the horn transducer at 
a frequency of 22.668 kHz. The meshed areas represent the 
cross section of the deformed transducer and the outline 
represents the un-deformed surfaces. 
 

Figure 2 shows the model shape of the first nonzero-
frequency resonance of the transducer calculated by 
ANSYS.  The mode is basically a longitudinal vibration 
with larger displacement at the horn tip than at the surface 
of the backing.  The resonance frequency was found at 
22.688 kHz using the material property data provided by 
the manufacturers, which was found to be very close to the 
measured frequencies of 22 to 23 kHz  

By expressing the displacement as the summation of the 
mode shapes  
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n
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the finite element equations can be converted to a modal 
equation and simplified  by representing it as an equivalent 
circuit for convenience in computation as was done in 
previous work [6]. 

The modal equation can then be written as 
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where di is the amplitude of the mode i,  Q is the electric 
charge on the electrode, Ri, pi and Fmi are effective 
damping, electromechanical coupling and force for the 
modes respectively.  The Ri and pi can be calculated from 
the finite element matrixes, and Fmi is expressed as 
 

}{}{ FFm T
ii ξ= , (4) 

 
where {F} is the vector of the force applied on the nodes. 
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Only the first longitudinal mode is taken into account in the 
analysis.  With these substitutions (3) becomes 
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FmpVdRj
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where the subscripts are omitted for simplification. 

A further simplification is shown for (5) by representing the 
response of the device by an equivalent circuit around 
resonance as is shown in Fig. 3, where the subscripts m are 
added to denote that the symbols actually represent mechanical 
variables and parameters.  The element in the dashed square is 
the sketch of electric driving circuit. 

Upon inspection we have Lm = 1, Cm = 1/ω1
2 and the 

mechanical "current" mI  is the modal velocity 
  

dIm
&= . (6) 

 
When the transducer is driven electrically and is mechanically 

unconstrained (no impacts with the free-mass), the modal 
velocity can shown to be  
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Fig. 3. A schematic diagram of the equivalent circuit of the 
transducer around resonance.  The generator source is shown  in 
the dashed square.  

 
B. Reaction of free-mass impacts to the transducer 
During the operation of the USDC, a small preload force, 

either from gravity or from a spring is applied to the transducer. 
The force pushes the transducer down toward the free-mass and 
the bit. A harmonic voltage at a frequency around the resonance 
drives the transducer. The free-mass is energized by the 
vibrating horn tip, then, bounces between the bit and horn tip 
and maintains a gap between them. The impacts of the free-
mass on the horn tip affect both vibration and translation 
movements of the horn transducer. 

1) Translation movement of the horn transducer 
During operation the preload force is constant and 

produces an acceleration a  of the transducer.  If we now 
suppose an impact happens at time It , and contact time is 
very short, the contact force can be expressed as 

 
)( IIc ttfF −= δ  , (8)  

 
where δ  is the delta function.  Using momentum 
conservation during the impact, we have 
 

II vmf ∆−= , (9) 
 
where m and Iv∆  is the mass and velocity of the free-
mass respectively. Each impact results in a change of the 
center of mass (COM) velocity of the horn by 
 

)( I
I

I ttH
M
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∆−
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where M  is the total mass of the horn transducer, and H  
is the step function.  Therefore, the COM velocity of the 
transducer becomes 
 

∑∆++=
I

IUatUU 0 . (11) 

 
The displacement of the transducer can then be determined 
by calculating the time integral of the velocity. 

2) Vibration of the transducer with constant harmonic 
voltage driving 

When the source resistance dR  as shown in Fig. 3 is 
zero, the transducer is driven by a constant voltage.  In this 
case, the vibration of the transducer can be solved explicitly.  
From the equivalent circuit, we can write the corresponding 
differential equation as 

 

mmmm FpVdCdRdL +=++ &&& . (12) 
 

The solution of this equation is the summation of the 
vibration induced by the electric voltage V and the 
vibration caused by the mechanical force mF .  The steady 

solution for a harmonic voltage )exp(0 tjVV ω=  is 
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A mechanical force is created by the impacts of the free-mass 
on the horn tip and can be determined from  (4),  (8) and (9), to 
be 

 
)()( ItIItm ttvmttfF −∆−=−= δξδξ , (14) 

 
where tξ  is the tip displacement of the mode shape.  The 
solution of (12) for the impact force Fm is a free ring-down 
vibration after the impact time It  and is expressed as 
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where α  is damping coefficient and ωf is the free vibration 
frequency, and 
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The final solution of the model velocity is 
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3) Transducer driven by a driver with output resistance 

In General, the output resistance of electronic drivers is not 
zero.  The resistance will reduce the output voltage, increase 
energy loss and change the characteristics of the vibrations 
induced by the impacts.   

The same approach utilized in the previous section can be 
applied to the case of non-zero output impedances of the drive 
circuit which results in a slightly more complicated solution.  
The steady solution of the electric driving voltage in this case is 
then 
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where the impedance of the transducer xZ  is 
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The solution for the impact is 
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where S  is the solution of the following polynomial 
equation 
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This cubic equation has one real root and a pair of 
conjugate complex roots.  For the free attenuating vibration, 
the solution S is in the form as 
 

fjS ωα +−= . (23) 
 
Although it is possible to obtain explicit expression of 

the solution, the expression is cumbersome and not 
accurate in practical numerical calculations.  We have 
chosen to solve the equation by following steps: 

1. Find the real root numerically. 
2. Factor the equation and reduce it to square 

equation. 
3. Solve the square equation. 

The results for the transducer with typical parameters are 
shown in the Fiq.4.  As expected, when the output 
resistance of the driver increases from 0 to infinity, the free 
vibration frequency varies from resonance frequency of the 
transducer to anti-resonance.  The resistance increases the 
damping and decreases the Q value of the oscillation.  The 
effect reaches the maximum around 10 =CRdfω . 

 
Fig. 4.  The effect of output resistance of driver on the 

free vibration of the horn transducer and the effective Q are 
shown. 

C. Interaction between transducer and the electric 
driver 
Power output from the voltage source E  is the time 

averaged integral of product of multiplication of the source 
voltage by the current and is expressed as 
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or 

EIEeE PPP += , (25) 

where the first item in (24), EeP , is the power with no free-

mass loading and EIP  is the power change introduced by 

the free-mass loading.  )(tI e  is the current though the 
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source due to the electric drive voltage, and )(tI I  is the 
current due to the free-mass impacts,    
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The power lost on the resistor dR  is calculated using the 

time-averaged power 
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It should be noted that, in these power calculations, all 

voltages and currents are expressed as real functions of time 
rather than their complex expression. Beside, the currents 
introduced by the impacts )(tI I  attenuate with time and 

oscillate at the frequency fω , which may be different from the 
driving frequency ω .  Therefore, the integrals in (24) and (28) 
are in a general form of 

 

∫ −++= dtegbtfatInt ct)cos()cos( , (29) 

 
which  can be calculated explicitly. 

D. Free-mass driven by the horn transducer 
1) Simple collision model 

A simple collision model was applied first to explore the 
basic mechanism of the horn/free-mass interaction. In this 
model, we assume that the energy loss and time duration of the 
impact is negligible, and the mass of the horn is much larger 
than the free-mass.  Using the conservation of momentum and 
energy, we have  
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Fig. 5.  A Schematic of the horn driving the free-mass. 

 

tinout vvv 2+= , (30) 
 

where inv  is the incoming velocity of free-mass prior to 

impact with the horn as shown in Fig. 5, outv is the 

outgoing velocity after impact with the horn, and tv  is the 
velocity of the horn tip. 

The horn vibrates at the resonance frequency.  The tip 
displacement is harmonic and is represented by 

 
)cos(0 ϑω += tuu , (31) 
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where time zero is set at the moment when the free-mass 
just reaches the edge of the range of tip vibration.   The 
velocity of the horn tip is found by taking the time 
derivative of the displacement and can be written as 
 

)sin(0 ϑωω +−= tuvt . (32) 
 
A computer model, which traces the position of the free-

mass until it leaves the tip vibration range (2u0), was 
programmed. The routine calculates the free-mass speed 
after each interaction with the horn.  The outgoing speeds 
of the free-mass versus the vibration phase are shown in the 
Fig. 6 for different ratios of incoming speed/tip velocity 
amplitudes. The model accounts for multiple impacts that 
may become possible when the impact is timed 
appropriately, which are shown in Fig. 6b and 6c at a phase 
of 50°. 

Although (30) implies that the outv  may be less than inv  

when the tip velocity tv  is negative, the computed results 
show that the free-mass velocity does increase on average 
after interaction with the vibrating tip.  Fig. 7 shows the 
average rate of the free-mass energy increase after impacts 
assuming a uniform probability of the relative phase in the 
range of 0° – 360°.  The increased rate is higher the lower 
the relative incoming speed.  The causes of the increase are 
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Fig. 6. The speeds of the free-mass after impacts, utv0 , versus 

relative tip vibration phase for different incoming speeds inv . 
The solid horizontal lines indicate the levels of the incoming 
speed inv and the amplitude of tip velocity tv .  
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Fig. 7.  The curve shows the average increase of the free-

mass kinetic energy after interaction as a function of the relative 
initial free-mass speed predicted by simple collision model. 

 
 (1) Although the tip velocity alternates harmonically and is 

negative half of the time, the free-mass has less chance to 
interact with the tip when the tip is pulling back, especially if 
the free-mass speed is low.  This results in the phase range 
where inout vv >  always being greater than half the full range 
as shown in Fig.6.  

(2) If the first impact results in low or negative outv , the free-
mass will stay in the tip vibration range longer and has the 
possibility to be hit a second time.  The irregularities of the 
curves around a phase of 50° in Fig. 6b and 6c are due to the 
multiple impacts between the free-mass and the tip. 

2) Finite element model 
In the simple collision model, we assumed that the horn 

mass is much greater than the free-mass.  This is true if we 
include the total mass of the horn transducer.  However, in 
the short time duration that the impact lasts, the impact 
wave propagates to a limited range within the horn 
transducer.  The remaining part of the transducer is actually 
not involved in the impact.  So, the assumption of a horn 
mass much greater than the free-mass may not be correct.  
To explore the details of the real impact/driving process, a 
finite element model was developed. 

In the model, the horn transducer is truncated to a λ/4 
long bar.   A symmetric boundary condition is applied at the 
other end of the bar.  The validity of this truncation is based 
on the fact that the any structure difference in the area far 
from the point of impact will not make a difference to the 
free-mass bouncing process.  From the view of wave 
propagation the free-mass should not "feel" the structure 
difference in the area, as long as the free-mass leaves the 
tip surface before the impact wave can propagate through 
the medium and be reflected back to the impact spot.  
Axisymmetrical solid elements are used to represent the 
horn tip. The initial conditions, i.e. the displacements and 
velocities of the nodes, are set to typical longitudinal 
vibration values in the bar.  Compression only link 
elements are placed between the nodes on the surfaces of 
the free-mass and the horn tip in the contact area.  The free-
mass is treated as a rigid block with a curvature in the 
contact area. 

The finite element approach provides a more accurate 
description of the free-mass speed after the collision and 
the time duration of the collision (see Fig. 8).  Comparing 
with the simple collision model (see Fig. 9), ones can see 
that the maximum speed is typically lower compared to the 
simple collision model.  This implies a limited effective 
mass of the horn.  The curve also displays a phase shift that 
can be explained by considering  the contact time. 
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Fig. 8.  The curve shows the  free-mass and tip surface 
displacement as a function of the time in a collision 
calculated by the finite element method. The horn vibrates 
at 22.5 kHz with tip amplitude of 10 µm. The free-mass 
incoming speed is equal to the tip peak velocity of 1.39 
m/s.  
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This figure shows double contacts occur in the interaction.  
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Fig. 9.  The velocity of the free-mass as a function of the 

phase computed by the simple collision, spring-mass and FEM 
models. 

 
3) Spring-mass model 

The finite element approach explored two phenomena that 
were not accounted for in the simple collision model, elasticity 
of the horn and the effective mass involved in the impacts.  
Based on these phenomena, a spring-mass model was 
developed.  The model uses a mass and two springs to represent 
the horn as shown in Fig. 10. 

The parameters of the mass M and front spring k are 
determined using the rebound velocity and contact time 
obtained by the finite element approach.  The top spring 
constant K is set by the resonance frequency of the horn 
transducer.   An example of the results of the model is presented 
in Fig. 9. The results are found to agree exceptionally well with 
the finite element results.  The spring-mass model therefore 
provides a more time efficient solution with reasonable 
accuracy, which was required by the integrated simulation 
program. 
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Fig. 10.  A sketch of the spring-mass model for horn/free-
mass interaction 

 
Figure 11 shows the average kinetic energy change of the 

free-mass during interaction with the horn versus the parameters 
of the mass and normalized incoming speeds calculated by the 
spring-mass model. tv  is the velocity amplitude of the horn tip 
(1.39 m/s in the calculation). The kinetic energy change 

decreases when the mass or the incoming speed increases.  
The effective masses and time delays were used in the final 
model of the USDC. 
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Fig. 11.  Average energy of the free-mass after interaction 
with horn as a function of the mass and incoming speed 
computed by the spring-mass model. The energy is 
normalized to the energy before the interaction.  
 

E. Free-mass bouncing from the drill bit 
The typical geometry of the drill stem is shown in Fig. 

12.  It consists of a head and a thin cylindrical bar.  The 
free-mass impacts the head and creates a stress wave that 
propagates toward the lower end of the bit.  A finite 
element model, which is similar to that used for horn tip 
and free-mass interaction, was utilized to investigate the 
impacts.  The length of the drill stem was fixed to be long 
enough to avoid the interference of a reflected wave from 
the bottom.   An example of the results for the displacement 
of the free-mass and the center of the top surface of drill bit 
as a function of time is shown in Fig. 12. 

 

 
Fig. 12.  Finite element displacement results of the free-

mass bounce from the drill bit. The free-mass is 2 grams 
and the incoming speed is 1 m/s. The rebound speed is 0.5 
m/s and contact time 15 µs. 

 
The free-mass is 2 grams with speed of 1 m/s.  The 

curvature of free-mass surface at the contact area is 0.1 m.  
The steel stem is 3 mm in diameter and has a head of 
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diameter 12 mm and is 6 mm long. The total height of the drill 
bit is 100 mm. A symmetric boundary condition is applied at 
the bottom. The rebound speed was found as 0.5 m/s.  The ratio 
of rebound speed to the incoming speed is dependent on the 
value of the mass as shown in Fig. 13.  The affect of the 
incoming speed is not significant. 
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Fig. 13.  Bounce speed versus mass and incoming speed 
computed by FE model 
 
By investigating the stress in the stem, we found that the impact 
resulted in a compression plane wave propagating with a 
velocity around 5000 m/s, which is in agreement with the 
longitudinal wave velocity in thin steel bar. The stress at the 
bottom of the stem is presented in Fig. 14 as a function of time. 
 

F. Integrated computer simulation model 
A computer program was developed to simulate the operation 

of the drill system including the horn transducer, free-mass, drill 
stem and the electric driver.  The program was able to predict 
the performance of the USDC under a variety of initial 
conditions.   

In the simulation, we assumed that the vibrations in the drill 
bit induced by the previous free-mass impacts were attenuated 
when the free-mass returns and hits the drill stem.  We also 
neglected the movement of the drill stem with respect to the 
rock, since it is very slow in comparison to the quick motion of 
the free-mass.  Therefore the top surface of the drill stem is set 
at the same position for the each of the impacts. Experimental 
observations suggest that this is a valid assumption. Replay of 
the video record taken by a high-speed camera showed the 
motion of the upper end of the drill stem was very small 
comparing with the free-mass or the horn transducer.  

The flowchart of the calculation procedure is presented in 
Fig. 15.  We start the simulation by setting the initial values of 
the position and velocity of the horn and the free-mass. The 
software traces the translation movements of the horn 
transducer and the free-mass as well as the vibration of the horn 
as a function of time. It predicts the time and location of the 
free-mass/horn or free-mass/bit collision.  Using the data of the 
free-mass/horn and free-mass/bit impacts that were determined 
from the models mentioned in previous paragraphs, the 
simulation calculates the changes of the variables as time 
evolves.  The movements and vibration due to the impact are 
recorded along with the impact momentum and time.  The 
program then proceeds to determine the next impact.  The 

energy supplied by the electric source and delivered to the 
transducer is integrated and recorded concurrently.  The 
statistics reported by the program include; electric input 
power, mechanical output power delivered to the drill stem, 
average and distribution of the free-mass speed, etc. The 
first 20% of the events are excluded in order to eliminate 
the possible influence of the initial settings. 

 
Fig. 14.  The stress as a function of times at the bottom of 

the stem that is 100 mm from the top surface. 
 
Typical simulation results are shown in Fig. 16-19. In 

this simulation, the transducer is excited by 100 V peak 
voltage at resonance frequency of 22.5 kHz. The 
mechanical Q of the transducer is 1000. The free-mass 
weighs 2 grams, the transducer with the mounting platform 
weighs 800 grams and Earth gravity 1  is applied as the 
preload force.  In Fig. 16, each dot represents an impact 
event of the free-mass with the bit stem.  The X-axis is the 
time of each impact and the Y-axis is the velocity of the 
free-mass before impact, normalized by the horn tip 
vibration velocity without loading, in this case, 6.67 m/s.  
The pattern looks like a random sequence of impacts.  No 
repeat cycle has been observed. Actually, no random 
perturbation is added to the program and the simulation is 
repeatable for fixed initial conditions.  Therefore the 
simulation actually shows a pseudo-random procedure.  
The amplitudes of the horn vibration at the moment before 
horn/free-mass contact are presented in Fig. 17. The 
amplitudes are normalized to the horn vibration amplitude 
without loading. As expected, the average amplitude is 
lower than that without loading because the horn loses 
energy while driving the free-mass.  Fig. 18(a) shows the 
heights of the horn transducer in the free-mass/horn impact 
events.  Ones can see the trace of the translation movement 
of the horn transducer.  Fig. 18(b) shows an example of 
experimental data of the horn movement in a drilling test.  

                                                 
1 The total mass reflects the contribution of the test stand.  
Later, a lighter test stand reduced the effective 800 grams 
by a factor of nearly 2. 
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The data was obtained from images taken by a high-speed 
camera.  The simulation results successfully showed a 
characteristic of the movement similar to the experimental data.  
The frequency, height and randomness of the jumps appear to 
agree very well with the data  

 
Data of USDC parameters 

Set initial conditions 

In the next collision, the 
mass will hit horn or bit? 
 
Horn                         Bit 

Will the bit hit 
them in the 

compact duration? 
No            Yes 

Will the horn hit 
them in the 

compact duration?
Yes            No

Data of the 
horn/mass impacts 

Data of the 
bit/mass impacts 

Calculate the 
change of the 

variables caused 
by the impact 

Calculate the 
change of the 

variables caused 
by the impact 

Reset the initial 
conditions 

according to the 
horn tip velocity 

Is the impact 
number reach the 

preset N? 
Yes                  No

Calculate the statistics and create output 
documents  

 
Fig. 15.  Flow chart of the simulation program 

 
The average speed of the free-mass hitting the drill stem was 

found to be 2.4 m/s. Fig. 19 shows the frequency of the impacts 
within different momentum ranges. This is an alternative 
presentation of the distribution of impact momentum.  This data 
representation is useful for the estimation of the drilling rates, 
which will be discussed later. 

The electric input power is 21 W and the mechanical 
power transferred to the drill stem is 6.5 W. The average hit 
frequency is 1100 Hz. The contact time of each free-
mass/bit impact is short, in the range from 10 to 15 µs (see 
Fig. 12).  Therefore, the average mechanical power 
delivered to the drill bit in the contact time is as high as 540 
W.  

The results show that, by using the free-mass to convert 
the high frequency vibrations to low frequency impacts, the 
low continuous electric input power is converted to a high 
mechanical power. The later creates large enough strain in 
the rock to enable efficient drilling.   

 
G. Strain and stress in rocks 
In order to better understand the fracture of rocks under 

impact loading from a drill or a corer, a finite element 
model was developed using ANSYS.  For the purpose of 
simplifying the problem, the rock is modeled as a circular 
cylinder with bottom surface fixed and the drill/corer 
impacts at the center of the top surface.  This simplification 
makes the problem axis-symmetric.  By using the axis-
symmetric elements available in ANSYS, the original 
three-dimensional problem is now reduced to a two-
dimensions.  The element size is made very fine near the 
drill/corer bit, and becomes coarser and coarser as it goes 
further away from the bit. 

 
Fig. 16.  Free-mass velocity normalized by the horn tip 
vibration velocity without loading of 6.67 m/s 

 
Fig. 17.  Horn vibration amplitude normalized by the 
amplitude without loading 
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Preliminary results were derived by assuming that the circular 
cylinder is made of isotropic material with a Young's modulus 
of 11.2 GPa, poisons ratio of 0.3, and density of 2470 3kg/m .  
The impact loading from the drill has a peak value of 50 MPa 
and duration of 50 secµ , as shown in Fig. 20.  

Contour maps of the maximum principal strain were plotted 
and used as indication of fracture of rocks.  It also shows how 
the elastic waves propagate in the rock.  Fig. 21 shows the 
contour maps of the cylinder for drilling and coring, 
respectively.  The drill bit is 3 mm in diameter.  The corer has 
an inner diameter of 2.4 mm and an outer diameter of 3 mm. 

The results show qualitative features of the rocks fracture 
under ultrasonic/sonic drilling or coring.  From Fig. 21 we find 
that the highest principal strain occurs at the edge of the drill bit.  
For the corer, the highest principal strain appears at both the 
outer and inner edge of the corer.  It implies that the fracture is 
likely going to happen at the edge, which is confirmed by 
viewing the high speed filming during drilling.  By comparing 
the various strain profiles in Fig. 21, we find that the maximum 
principal strain under coring is higher than that under drilling, 
and the area of high principal strain under coring is also larger 
than that under drilling.  It implies that with the same outer 
diameter and under the same loading, a corer drills faster than a 
solid drill of the same diameter. This is confirmed by 
experiments. 
 

 
 

(a) A typical simulation results 
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(b) Typical experimental observation 
 

Fig. 18.  The body movement of the horn transducer 
 

 
Fig. 19.  The impact frequency versus momentum 
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Fig. 20.  The figures shows impact loading of the drill by 
the rock as a function of the time. 
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Fig. 21.  The principal strain profile at various times after 
impact of the free-mass on the drill stem for a drilling bit and a 
coring bit. 

 
H. Estimation of drilling rate 
In order to break rock by mechanically induced stresses, 

sufficient force or energy must be applied to the rock in order 
induce stresses that exceed the rock’s strength.  Once this 
threshold value of force or energy is exceeded, the amount of 
energy required to break or remove a unit volume of rock 
remains nearly constant [7].  This energy parameter, which is a 
measure of the efficiency of the drill, is defined as specific 
energy [8].  The rate at which rock can be crushed, R, equals 

EPR=  (33) 
where P = power input to the rock, joules/sec; 
 E = specific energy, joules/ 3cm . 

The specific energy E and the compression strength of 
various types of rocks are listed in Table 2 below [8] 

 
Table 2.  Specific energy and compression strength of rocks 

 
Rock 
type 

Compression 
strength 
(MPa) 

Specific 
energy 
(joules/cm^3) 

Soft < 50 30 
Medium 50 – 100 50 
Hard 100 – 200 260 
Very 
hard 

> 200 390 

 
To estimate the drilling rate, we need to know how much 

energy is transferred from the drill bit to the rock while the 
stress is higher than the strength of the rock.  By using the finite 

element model mentioned in the previous section, we can 
construct the force-displacement curve for the surface of 
rock under the drill bit.  A typical force-displacement curve 
is shown in Fig. 22.  The area enclosed by the curve is the 
total work done to the rock by the drill bit.  However, not 
all the energy transferred to the rock is used to crush the 
rock.  Only the part of the energy that is transferred while 
the stress is higher than the strength of rock is considered 
as contributing to rock crushing.  The four straight lines in 
Fig. 23 represent the strength of four different types of 
rocks, respectively.  They are derived from the comparison 
of the compression strength listed in Table 2, and the force-
stresses relationship from the finite element model.  To 
obtain the drilling rate in terms of cm^3 per impact, we 
would calculate the released energy for the four different 
values of strength for different types of rocks and divide 
these values by their respective specific energy. The energy 
used to crush the rock was approximated by the area 
limited by the Displacement-Force curve (Fig. 22) that lies 
above the minimum force lines for a given rock strength. 

It should be noted that the force-displacement curve 
shown in Fig. 22 is derived under the assumption that the 
loading does not exceed the strength of the rock.  
Otherwise the curve beyond the strength will appear totally 
different.  However, we have assumed that the energy 
transferred to the rock is approximately the same. 

A statistical analysis of the impact loading in terms of 
impact momentum vs. frequency is derived from the 
integrated horn – free-mass – drill-bit model (see Fig.19 for 
typical momentum transfer distribution). Combining the 
result shown in Fig. 23 and the calculated energy 
transferred to the rock at different level of impact 
momentum, we derive the power used to crush the rock.  
The drilling rate was estimated by dividing this value by 
the specific energy (33). 
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Fig. 22.  Force-displacement curve of rock surface under 

the drill bit. 
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III.  INVESTIGATION OF DESIGN PARAMETERS AND 
COMPARISON WITH EXPERIMENTS 

The model was utilized to investigate and optimize the design 
of the USDC.  One of key design parameters is the mass of the 
free-mass that transfers energy from the horn to the drill stem. 
The change of the mass determines the optimum preload of the 
horn transducer, the energy obtained from the horn and the 
impact momentum transfer, etc. Figure 23 shows the simulation 
performance of the drill for different free-mass.  We derived the 
drilling rates of different free-masses for three types of rocks.  It 
is found that, for soft and medium rocks, the drilling rate 
reaches maximum at a free-mass of about 2 grams. However, 
for hard rock the 4-gram free-mass predicts a higher drilling 
rate. These predictions agreed exceedingly well with the 
experimental findings. 
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Fig. 23.  Drilling rate for different free-masses. 
 

Preliminary studies and experimental tests have shown that 
the drilling rate increases non-linearly with the input power.  
Therefore for a given average power, it makes sense to increase 
the peak input power by using duty-cycle loading.  The curves 
in Fig. 24 show simulated drilling rate for different 
combinations of peak power and duty-cycle.  The average 
power is maintained at 10 watts by changing the duty cycle 
appropriately.  It is found that the drilling rate increases with the 
peak power  until it reaches a plateau. 

Drilling tests were performed on a series of rock samples.   
These rock samples were suggested by NASA geologists to 
have similar mechanical properties as expected for the rock 
types found on Mars.  The drilling depth as a function of time is 
shown in Fig. 25 for a drill bit 2.85 mm in diameter.  The test 
results were performed using 12-Watts average power (24-Watts 
peak power- 50% duty cycle).  The power was measured at the 
input of the electronics and includes circuit loss of the driving 
electronics. The efficiency of the electronics was around 70%.  

The drilling rate is seen to decrease as a function of the time 
(depth).  It is likely due to a combination of causes including the 
collection of rock powdered cuttings at the face of the bit 
damping the impact on the rock, the drag of the tailings on the 
drill stem and possibly inhomogeneity of the elastic properties 
of the rock as a function of depth.  

There are no hard or very hard rocks such as quartz, 
corundum or diamond in these rock samples. Most samples 
belong to rocks of medium hardness. The initial drilling rates 

for most rocks samples ranged from 1-5x10-4 cm3/s except 
two samples of Porphyritic Hypersthene Andesile and 
Basalt Scoria. These two are very porous and fragile than 
the others in the sample set. The drilling rates for these 
were determined to be 7.1 and 10x10-3 cm3/s respectively. 
We divided these rock samples into two groups of medium 
and soft accordingly.  The experimental drilling rates are 
marked in Fig. 24 for comparison with the simulation and 
show a general agreement with the model prediction. 
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Fig. 24.  The curves show the simulated drilling rates as a 
function of the peak power and the hollow squares and 
triangles indicate the experimental results. The drill bit is 3 
mm in diameter in the simulation and 2.85 mm in the 
experiment. The category of Experiment-soft includes the 
samples of Porphyritic Hypersthene Andesite and Basalt 
Scoria, and the Experiment-medium includes the other rock 
samples as noted in Fig. 25. 

The USDC was modeled to predict its behavior towards 
the goal of optimizing its performance in various 
configurations.  Physical models were developed for each 
section of the device and their interactions.  The 
piezoelectric horn transducer was modeled using finite 
element models and with some simplifications converted to 
an equivalent circuit to simplify the interaction of the free-
mass and electronic driver.  The horn tip free-mass 
interaction was analyzed by a simple collision theory to 
explore the basic drive mechanism and by finite element 
approach for accuracy. A spring-mass model was 
developed to obtain time efficient solutions. Finite element 
models were also applied to the free-mass/drill bit and the 
drill bit/rock interactions. The program simulating the 
operation of the device was integrated from the models of 
the various parts and their interactions. 
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Fig. 25 – The experimental data of drilling depth as a 
function of time for various rock types.   

IV.  CONCLUSIONS 
The developed models allowed for the investigation of the 

various interactions of the USDC.  It was shown that, by using 
the free-mass, the continuous high frequency vibration of the 
horn could be converted to low frequency high mechanical 
power impacts.  These impacts created large enough strain in 
the rock to enable efficient drilling.  Using a simulation of the 
operation of the USDC the characteristics of the USDC 
performance were investigated and has been used to guide the 
design of a prototype device.   The drilling rates calculated from 
the model were found to be in agreement with drilling rate data 
measured on a variety of rock samples.   
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